植物科学学报杂志

期刊简介

               《武汉植物学研究》为科学出版社出版的植物学综合性学术期刊(学报级),1983年创刊,国内外公开发行。主编由植物学家黄宏文研究员担任;编委会由国内植物学及各分支学科的专家、学者共47人(其中5位院士)组成。本刊以促进学术交流,推动学科发展,为国民经济建设服务为宗旨,主要报道植物学及各分支学科的基础研究和应用研究方面具创新性、有重要意义的原始研究论文和最新研究成果,植物学研究的新技术、新方法等。栏目设置有:研究论文、技术与方法、综合评述、研究简报、学术讨论、重要书刊评介、学术动态等。主要读者对象为从事植物学研究的科技人员、大专院校师生,以及相关学科的科技工作者。    《武汉植物学研究》是中国科技核心期刊、中国中文核心期刊,已被美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、美国《生物学文摘》(BA)、日本《科学技术文献速报》(JST)、英国《国际农业与生物科学研究中心》文摘(CABI)、美国《剑桥科学文摘:自然科学》(CSA:NS)、波兰《哥白尼索引》(IC)、中国科学引文数据库(CSCD)核心库、中国科技论文与引文数据库(CSTPCD)、中国知识资源总库《中国科技期刊精品数据库》、中国生物学文献数据库、中国核心期刊(遴选)数据库、中国学术期刊综合评价数据库(CAJCED)、中文科技期刊数据库(SWIC)、中国期刊全文数据库(CJFD)、《中国生物学文摘》、《中国农业文摘》、《中国林业文摘》、《中国药学文摘》等20余种数据库或检索期刊收录。现已与美、英、日、瑞士等国家的十多个单位建立了期刊交换关系。本刊曾四次荣获湖北省优秀科技期刊奖,并曾获全国优秀科技期刊奖、中国科学院优秀期刊奖。    《武汉植物学研究》为双月刊,大16开本,全铜版纸印刷。国际标准刊号:ISSN 1000-470X,国内统一刊号:CN 42-1149 / Q。国外由中国国际图书贸易总公司发行,发行代号:BM872;国内邮发代号:38-103,定价15.00元,全年90.00元。    编辑部地址:武汉市武昌磨山中科院武汉植物园内    邮政编码:430074    电话:027-87510755             

写医学论文时,应该如何选择统计分析方法?

时间:2024-11-27 14:46:08

在医学论文写作中,选择合适的统计分析方法对于准确解读数据和得出可靠结论至关重要。以下是一些指导原则:

一、目的


1.研究目的分类

描述性研究:如果只是想描述样本的特征,如患者的年龄分布、疾病的症状频率等,通常使用描述性统计方法。

比较性研究:当需要比较两组或多组数据之间的差异时,如比较不同治疗方法对患者疗效的差异,就要根据数据类型选择合适的假设检验方法。

相关性研究:旨在研究两个或多个变量之间的关系,如研究患者的血压与体重之间的关系,可选择相关分析方法。

预测性研究:若想根据一些已知变量预测另一个变量的值,如根据患者的某些检查指标预测疾病的预后,可能会用到回归分析等方法。

2.数据类型辨别

定量数据(数值型数据):包括连续型数据(如身高、体重、血压等可以取任意数值的数据)和离散型数据(如患者人数、细胞计数等只能取整数的数据)。对于定量数据,常用的统计方法有 t 检验、方差分析、线性回归等。

定性数据(分类数据):如患者的性别(男 / 女)、疾病类型(冠心病、糖尿病等)。对于定性数据,一般采用卡方检验、Fisher 精确检验等来分析。

二、实验设计


1.样本分布情况

正态分布:如果数据呈正态分布,在比较两组定量数据的均值时,可使用独立样本 t 检验(两组间比较)或配对样本 t 检验(配对设计,如同一患者治疗前后比较)。对于多组定量数据的比较,可采用方差分析。

非正态分布:当数据不呈正态分布时,对于两组间比较可以使用非参数检验,如 Mann - Whitney U 检验(独立样本)或 Wilcoxon 符号秩和检验(配对样本)。对于多组间比较,可以使用 Kruskal - Wallis H 检验。

2.实验设计特点

完全随机设计:如果研究是将对象完全随机地分配到不同组,如比较 A 药、B 药和安慰剂对某种疾病的治疗效果,对于定量数据可以用方差分析来比较组间差异,对于定性数据可以用卡方检验。

配对设计:常见于自身前后对照实验或配对样本实验,如对同一批患者在手术前后的某一指标进行比较,对于定量数据使用配对 t 检验或 Wilcoxon 符号秩和检验(非正态分布时),对于定性数据可以用 McNemar 检验。

分层设计:当考虑到某些因素(如年龄、性别等)可能对结果产生影响而进行分层抽样或分层分析时,需要采用分层分析的统计方法,如分层卡方检验或分层线性模型。

三、变量数量和关系


1.单变量分析:只涉及一个变量的分析,如描述某一疾病患者的年龄分布,主要使用描述性统计方法。若要比较不同组在这个变量上的差异,对于定量数据用 t 检验或方差分析(正态分布)或非参数检验(非正态分布),对于定性数据用卡方检验。

2.多变量分析

多个自变量与一个因变量:如果有多个自变量影响一个因变量,如研究患者的年龄、性别、血压、血脂等多个因素对心脏病发病风险的影响,可采用多元线性回归(因变量为定量数据)或逻辑回归(因变量为分类数据,如是否发病)。

多个变量间的相互关系:对于研究多个变量之间的相互关系,如基因表达谱数据中多个基因之间的相关性,可以使用主成分分析、聚类分析、因子分析等方法来探索变量之间的内在结构和关系。

四、参考文献和专业建议


1.查阅类似研究:查看在相同或相似研究领域中,其他作者使用的统计方法。

2.咨询统计专家:如果对统计方法的选择不确定,可向专业的统计学家或有丰富统计经验的研究人员咨询。他们可以根据具体的数据和研究设计提供最合适的统计方法建议。